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Shift in the velocity of a front due to a cutoff

Eric Brunet* and Bernard Derrida†

Laboratoire de Physique Statistique, ENS, 24 rue Lhomond, 75005 Paris, France
~Received 5 May 1997!

We consider the effect of a small cutoff« on the velocity of a traveling wave in one dimension. Simulations
done over more than ten orders of magnitude as well as a simple theoretical argument indicate that the effect
of the cutoff« is to select a single velocity that converges when«→0 to the one predicted by the marginal
stability argument. For small«, the shift in velocity has the formK(ln«)22 and our prediction for the constant
K agrees very well with the results of our simulations. A very similar logarithmic shift appears in more
complicated situations, in particular in finite-size effects of some microscopic stochastic systems. Our theoret-
ical approach can also be extended to give a simple way of deriving the shift in position due to initial
conditions in the Fisher-Kolmogorov or similar equations.@S1063-651X~97!01609-7#

PACS number~s!: 02.50.Ey, 03.40.Kf, 47.20.Ky
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I. INTRODUCTION

Equations describing the propagation of a front betwee
stable and an unstable state appear@1–7# in a large variety of
situations in physics, chemistry, and biology. One of the s
plest equations of this kind is the Fisher-Kolmogorov@1,2#
equation

]h

]t
5

]2h

]x2 1h2h3, ~1!

which describes the evolution of a space- and tim
dependent concentrationh(x,t) in a reaction-diffusion sys-
tem. This equation, originally introduced to study the spre
of advantageous genes in a population@1#, has been widely
used in other contexts, in particular to describe the time
pendence of the concentration of some species in a chem
reaction@8,9#.

For such an equation, the uniform solutionsh51 and
h50 are, respectively, stable and unstable and it is kno
@3,7,10–12# that for initial conditions such thath(x,0)→1 as
x→2` and h(x,0)→0 as x→1` there exists a one
parameter familyFv of traveling-wave solutions~indexed by
their velocityv) of the form

h~x,t !5Fv~x2vt !, ~2!

with Fv decreasing,Fv(z)→1 asz→2` andFv(z)→0 as
z→`. The analytic expression of the shapeFv is in general
not known, but one can determine the range of velocitiev
for which solutions of type~2! exist. If one assumes an ex
ponential decay

Fv~z!.e2gz for large z, ~3!

it is easy to see by replacing Eqs.~2! and~3! in Eq. ~1! that
the velocityv is given by
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v~g!5g1
1

g
. ~4!

As g is arbitrary, this shows the well-known fact that th
range of possible velocities isv>2. The minimal velocity
v052 is reached forg051 and for steep enough initial con
ditions h(x,0) ~which decay faster thane2g0x), the solution
selected@3,4,6,7,10–12# for large t is the one corresponding
to this minimal velocityv0.

Equations of type~1! are obtained either as the large-sca
limit @5,8,13–16# or as the mean-field limit@17# of physical
situations that are discrete at the microscopic level~particles,
lattice models, etc.! As the number of particles is an intege
the concentrationh(x,t) could be thought of as being large
than some«, which would correspond to the value ofh(x,t)
when a single particle is present. Equations of type~1! ap-
pear then as the limit of the discrete model when«→0.
Several authors@8,13,14# already have noticed in their nu
merical works that the speedv« of the discrete model con
verges slowly, as« tends to 0, towards the minimal velocit
v0. We believe that the main effect of having«Þ0 is to
introduce a cutoff in the tail of the front and that this chang
the speed noticeably.

The speed of the front is in general governed by its tail.
the present work, we consider equations similar to Eq.~1!,
which we modify in such a way that wheneverh(x,t) is
much smaller than a cutoff«, it is replaced by 0. The cutof
« can be introduced by replacing Eq.~1! by

]h

]t
5

]2h

]x2 1~h2h3!a~h!, ~5!

with

a~h!51 if h.«,

a~h!!1 if h!«. ~6!

For example, one could choosea(h)51 for h>« and
a(h)5h/« for h<«. Another choice that we will use in Sec
IV is simply a(h)51 if h.« anda(h)50 if h<«.
2597 © 1997 The American Physical Society
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2598 56ERIC BRUNET AND BERNARD DERRIDA
The question we address here is the effect of the cuto«
on the velocityv« of the front. We will show that the veloc
ity v« converges, as«→0, to the minimal velocityv0 of the
original problem~without a cutoff! and that the main correc
tion to the velocity of the front is

v«.v02
p2g0

2

2
v9~g0!

1

~ ln«!2 ~7!

for an equation of type~1! for which the velocity is related to
the exponential decayg of the shape~2! by some relation
v(g). ~Everywhere we denote byv0 the minimal velocity
andg0 the corresponding value of the decayg.! In the par-
ticular case of Eq.~1!, wherev(g) is given by Eq.~4!, this
becomes

v«.22
p2

~ ln«!2 . ~8!

In Sec. II we describe an equation of type~1! where both
space and time are discrete, so that simulations are m
easier to perform. The results of the numerical simulation
this equation are described in Sec. III: as«→0, the velocity
is seen to converge like (ln«)22 to the minimal velocityv0
and the shape of the front appears to take a scaling form

In Sec. IV we show that for equations of type~1! in the
presence of a small cutoff« as in Eq.~5!, one can calculate
both the shape of the front and the shift in velocity. T
results are in excellent agreement with the numerical dat
Sec. III.

In Sec. V we consider a model defined, for a finite nu
berN of particles, by some microscopic stochastic dynam
that reduces to the front equation of Secs. III and IV in t
limit N→`. Despite the presence of noise, our simulatio
indicate that in this case too the velocity dependence of
front decays slowly@as (lnN)22# to the minimal velocityv0
of the front.

II. DISCRETE FRONT EQUATION

To perform numerical simulations, it is much easier
study a case where both time and space are discrete
ables. We consider here the equation

h~x,t11!5g~x,t ! Q„g~x,t !2«…, ~9a!

where

g~x,t !512@12ph~x21,t !2~12p!h~x,t !#2. ~9b!

Time is a discrete variable and if initially the concentrati
h(x,0) is only defined whenx is an integer,h(x,t) remains
so at any later time. Becauset and x are both integers, the
cutoff « can be introduced as in Eq.~9! in the crudest way
using a HeavisideQ function. @We have checked, howeve
that other ways of introducing the cutoff« as in Eqs.~5! and
~6! do not change the results.#

Equation~9! appears naturally~in the limit «50) in the
problem of directed polymers on disordered trees@17,18#
~where the energy of the bonds is either 1 with probabilityp
ch
f

of

-
s
e
s
e

ri-

or 0 with probability 12p). At this stage we will not give a
justification for introducing the cutoff«. This will be dis-
cussed in Sec. V.

We consider for the initial condition a step function

h~x,0!50 if x>0,

h~x,0!51 if x,0. ~10!

Clearly, for such an initial condition,h(x,t)51 for x,0 at
all times. As h(x,t).1 behind the front andh(x,t).0
ahead of the front, we define the positionXt of the front at
time t by

Xt5 (
x50

1`

h~x,t !. ~11!

The velocity of the frontv« can then be calculated by

v«5 lim
t→`

Xt

t
5^Xt112Xt&, ~12!

where the average is taken over time.@Note that ash(x,t) is
only defined on integers, the differenceXt112Xt is time
dependent and has to be averaged as in Eq.~12!.#

When«50, the evolution equation~9! becomes

h~x,t11!512@12ph~x21,t !2~12p!h~x,t !#2.
~13!

As for Eq. ~1!, there is a one-parameter family of solution
Fv of the form~2! indexed by the velocityv which is related
as in Eq.~3! to the exponential decayg of the shape by

v~g!5
1

g
ln@2peg12~12p!#. ~14!

@This relation is obtained as Eq.~4! by considering the tail of
the front whereh(x,t) is small and where therefore~13! can
be linearized.#

One can show that forp,1/2, v(g) reaches a minima
value v0 smaller than 1 for someg0, whereas forp>1/2,
v(g) is a strictly decreasing function ofg, implying that the
minimal velocity isv05 limg→`v(g)51. We will not dis-
cuss this phase transition here and we assume from now
thatp,1/2. Table I gives some values ofv0 andg0 obtained
from Eq. ~14!.

It is important to notice that forp,1/2, the functionv(g)
has a single minimum atg0. Therefore, there are in gener
two choicesg1 andg2 of g for each velocityv. For vÞv0,
the exponential decay ofFv(z) is dominated by
min(g1 ,g2). As v→v0, the two rootsg1 and g2 become
equal and the effect of this degeneracy gives~in a well cho-
sen frame!

TABLE I. Values ofg0 andv0 for somep when«50.

p 0.05 0.25 0.45

g0 2.751 111 . . . 2.553 244 . . . 4.051 851 . . .
v0 0.451 818 . . . 0.810 710 . . . 0.979 187 . . .
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56 2599SHIFT IN THE VELOCITY OF A FRONT DUE TO A CUTOFF
Fv0
~z!.Aze2g0z for large z, ~15!

whereA is a constant. This large-z behavior can be recov
ered by looking at the general solution of the linearized fo
of Eq. ~13!,

h~x,t11!52ph~x21,t !12~12p!h~x,t !. ~16!

III. NUMERICAL DETERMINATION OF THE VELOCITY

We iterated numerically Eq.~9! with the initial condition
~10! for several choices ofp,1/2 and for« varying between
0.03 and 10217. We observed that the speed is usually ve
easy to measure because, after a short transient time
system reaches a periodic regime for which

h~x,t1T!5h~x2Y,t ! ~17!

for some constantsT andY. The speedv« of the front is then
simply given by

v«5
Y

T
. ~18!

For example, forp50.25 and«51025, we findT5431 and
Y5343, so thatv«5343/431. The emergence of this pe
odic behavior is due to the locking of the dynamical syst
of theh(x,t) on a limit cycle. BecauseY andT are integers,
our numerical simulations give the speed with aninfinite
accuracy.

For each choice ofp and«, we measured the speed of th
front, as defined by Eq.~12! and its shape. Figure 1 is
log-log plot of the differencev02v« versus« ~varying be-
tween 0.03 and 10217) for three choices of the paramet
p. The solid lines on the plot indicate the value predicted
the calculations of Sec. IV.

We see in this figure that the velocityv« converges slowly
towards the minimal velocityv0 as «→0. Our simulations,
done over several orders of magnitude~here 15!, reveal that
the convergence is logarithmic:v02v«;(ln«)22.

As the front is moving, to measure its shape, we need
locate its position. Here we use expression~11! and we mea-
sure the shapes«(z) of the front at a given timet relative to
its positionXt by

FIG. 1. Differencev02v« for p50.05, 0.25, and 0.5. The sym
bols represent the result of our numerical simulations and the s
lines indicate the prediction of the analysis of Sec. IV.
y
the

y

to

s«~z!5h~z1Xt ,t !. ~19!

When the system reaches the limit cycle~17!, the shape
s«(z) becomes roughly independent of the time chosen.~In
fact, it becomes periodic of periodT, but the shapes« has a
smooth envelope.! We have measured this shape at so
arbitrary large enough time to avoid transient effects. As
expects«(z) to look more and more likeFv0

(z) as« tends to

0, we normalize this shape by dividing it bye2g0z. The result
s«(z)eg0z is plotted versusz for p50.25 and «51029,
10211, 10213, 10215, and 10217 in Fig. 2.

On the left-hand side of the graph, our data coincide o
an increasing range as« decreases, indicating that far from
the cutoff, the shape converges to expression~15! of
Fv0

(z). On the right-hand side, the curves increase up t
maximum before falling down to some small value th
seems to be independent of«. When « is multiplied by a
constant factor~here 1022), the maximum as well as the
right-hand side of the curves is translated by a cons
amount. This indicates that for« small enough, the shap
s«(z) in the tail ~that is, forz large! takes the scaling form

s«~z!.u ln«u GS z

u ln«u De2g0z. ~20!

We will see that our analysis of Sec. IV does predict th
scaling form. As one expects this shape to coincide with
asymptotic form~15! of Fv0

(z) for 1!z!u ln«u, the scaling

function G(y) should be linear for smally.

IV. CALCULATION OF THE VELOCITY
FOR A SMALL CUTOFF

The first remark we make is that as soon as we introd
a cutoff through a functiona(h), which is everywhere
smaller than 1, the velocityv« of the front is lowered com-
pared to the velocity obtained in the absence of a cutoff. T
is easy to check by comparing a solutionh«(x,t) of Eq. ~5!,
wherea(h) is present, and a solutionh0(x,t) of Eq. ~1!. If
initially h«(x,0),h0(x,0), the solutionh« will never be able
to take over the solutionh0. Indeed, if the two functions
h«(x,0) andh0(x,0) were to coincide for the first time a
some point x, we would have at that poin
]2h« /]x2<]2h0 /]x2 and together with the effect ofa(h)

lid
FIG. 2. Normalized shape of the fronts«(z)eg0z versusz for

p50.25 and several choices of«.
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2600 56ERIC BRUNET AND BERNARD DERRIDA
this would bring back the system in the situation whe
h«(x,t),h0(x,t) @3,7#. This shows thatv«<v0.

For the calculation of the velocityv« , we will consider
first the modified Fisher-Kolmogorov equation~5! when the
cutoff functiona(h) is simply given by

a~h!5Q~h2«!. ~21!

In this section we will calculate the leading correction to t
velocity when« is small and we will obtain the scaling func
tion G that appears in Eq.~20!. Then we will discuss briefly
how our analysis could be extended to more general form
the cutoff functiona(h) or to other traveling-wave equation
such as Eq.~9!.

As v« is the velocity of the front, its shap
s«(z)5h(z1v«t,t) in the asymptotic regime satisfies

v«s«81s«91~s«2s«
2!a~s«!50.

When « is small, with the choice~21! for a(h), we can
decompose the range of values ofz into three regions:region
I, wheres«(z) is not small compared to 1;region II, where
«,s«(z)!1; andregion III, wheres«(z),«.

In region I, the shape of the fronts« looks like Fv0
,

whereas in regions II and III, ass« is small, it satisfies the
linear equations

v«s«81s«91s«50 in region II, ~22!

v«s«81s«950 in region III. ~23!

These linear equations~22! and ~23! can be solved easily
The only problem is to make sure that the solution in reg
II and its derivative coincides withFv0

at the boundary be
tween I and II and with the solution valid in region III at th
boundary between II and III. If we callD the shift in the
velocity

D5v02v« ~24!

and if we denoteg r6 ig i the two roots of the equation
v(g)5v« , the shapes« is given in the three regions by

s«~z!.Fv0
~z! in region I,

s«~z!.Ce2grzsin~g iz1D ! in region II, ~25!

s«~z!.«e2v«~z2z0! in region III,

and we can determine the unknown quantitiesC, D, z0, and
v« by using the boundary conditions.

For large z we know from Eq. ~15! that
Fv0

(z).Aze2g0z for someA. Therefore, asg02g r;D and

g i;D1/2, the boundary conditions between regions I and
impose, to leading order inD1/2, thatC5A/g i andD50.

At the boundary between regions II and III, we ha
s«(z)5« andz5z0. If we impose the continuity ofs« and of
its first derivative at this point, we get

Ae2grz0sin~g iz0!5«g i ~26a!

and
of

n

I

Ae2grz0@2g rsin~g iz0!1g icos~g iz0!#52v««g i .
~26b!

Taking the ratio between these two relations leads to

g r2
g i

tan~g iz0!
5v« . ~27!

When D is small,g r.g051, v«.v052, andg i;D1/2.
Thus the only way to satisfy Eq.~27! is to setg iz0.p and
p2g iz0.g i;D1/2. Therefore, Eq.~26! implies to leading
order thatz0.2(ln«)/g0 and the conditiong iz0.p gives

g i.
p

z0
.

pg0

u ln«u
. ~28!

Then, asg i is small, the differenceD5v02v« is given by

v02v«.
1

2
v9~g0!g i

2.
v9~g0!p2g0

2

2~ ln«!2 , ~29!

which is the result announced in Eqs.~7! and ~8!.
A different cutoff function a(h) should not affect the

shape ofs« in region II or the sizez0 of region II. Only the
precise matching between regions II and III might be mo
fied and we do not think that this would change the lead
dependence ofz0 in «, which controls everything. In fact
there are other choices of the cutoff functiona(h) ~piecewise
constant! for which we could find the explicit solution in
region III, confirming that the precise form ofa(h) does not
change Eq.~28!. The generalization of the above argument
equations other than Eq.~1! ~and in particular to the cas
studied in Secs. II and III! is straightforward. Only the form
of the linear equation is changed and the only effect on
final result ~7! is that one has to use a different functio
v(g).

When expression~7! is compared in Fig. 1 with the re
sults of the simulations, the agreement is excellent. Mo
over, in region II, one sees from Eqs.~25! and ~28! that

s«~z!.
A

pg0
u ln«usinS pg0z

u ln«u De2g0z, ~30!

which also agrees with the scaling form~20!.
Recently, for a simple model of evolution@19,20# gov-

erned by a linear equation, the velocity was found to be
logarithm of the cutoff to the power 1/3. This result wa
obtained by an analysis that has some similarities to the
presented in this section.

V. STOCHASTIC MODEL

Many models described by traveling-wave equatio
originate from a large-scale limit of microscopic stochas
models involving a finite numberN of particles @13–16#.
Here we study such a microscopic model, the limit of whi
reduces to Eq.~13! whenN→`. Our numerical results, pre
sented below, indicate a large-N correction to the velocity of
the form vN.v02a(lnN)22 with a coefficienta consistent
with the one calculated in Sec. IV for«51/N.

The model we consider in this section appears in the st
of directed polymers@14# and is, up to minor changes
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56 2601SHIFT IN THE VELOCITY OF A FRONT DUE TO A CUTOFF
equivalent to a model describing the dynamics of h
spheres@15#. It is a stochastic process discrete in both tim
and space with two parameters:N, the number of particles
and p, a real number between 0 and 1. At timet (t is an
integer!, we haveN particles on a line at integer position
x1(t), x2(t), . . . , xN(t). Several particles may occupy th
same site. At each time step, theN positions evolve in the
following way: for eachi , we choose two particlesj i and
j i8 at random among theN particles.~These two particles do
not need to be different.! Then we updatexi(t) by

xi~ t11!5max@xj i
~ t !1a i , xj

i8
~ t !1a i8#, ~31!

wherea i anda i8 are two independent random numbers ta
ing the value 1 with probabilityp or 0 with probability
12p. The numbersa i , a i8 , j i , and j i8 change at each time
step. Initially (t50), all particles are at the origin, so that w
havexi(0)50 for all i .

At time t, the distribution of thexi(t) on the line can be
represented by a functionh(x,t), which counts the fraction
of particles strictly at the right ofx,

h~x,t !5
1

N (
xi ~ t !.x

1. ~32!

Obviously h(x,t) is always an integral multiple of 1/N. At
t50, we haveh(x,0)51 if x,0 and h(x,0)50 if x>0.
One can notice that the definition of the positionXt of the
front used in Eq.~11! coincides with the average position o
the N particles

Xt5 (
x50

1`

h~x,t !5
1

N(
i 51

N

xi~ t !. ~33!

Given the positionsxi(t) of all the particles@or, equiva-
lently, given the functionh(x,t)#, thexi(t11) become inde-
pendent random variables. Therefore, givenh(x,t), the prob-
ability for each particle to have at timet11 a position
strictly larger thanx is given by

^h~x,t11! u h~x,t !&

512@12ph~x21,t !2~12p!h~x,t !#2. ~34!

The difficulty of the problem comes from the fact that o
can only averageh(x,t11) over a single time step. On th
right-hand side of Eq.~34! we see terms such ash2(x,t) or
h(x21,t)h(x,t) and one has to calculate all the correlatio
of the h(x,t) in order to find^h(x,t11)&. This makes the
problem very difficult for finiteN. However, givenh(x,t),
the xi(t11) are independent and in the limitN→`, the
fluctuations ofh(x,t11) are negligible. Therefore, whe
N→`, h(x,t) evolves according to the deterministic equ
tion ~13!. As the initial condition is a step function, we ex
pect the front to move, in the limitN→`, with the minimal
velocity v0 of Eq. ~14!.

For large but finiteN, we expect the correction to th
velocity to have two main origins. First,h(x,t) takes only
values that are integral multiples of 1/N, so that 1/N plays a
role similar to the cutoff« of Sec. II. Second,h(x,t) fluctu-
ates around its average and this has the effect of adding n
d

-

-

ise

to the evolution equation~13!. In the rest of this section we
present the results of simulations done for large but finiteN
and we will see that the shift in the velocity seems to be v
close to the expression of Sec. IV when«51/N.

With the most direct way of simulating the model forN
finite, it is difficult to study systems of size much larger th
106. Here we use a more sophisticated method allowingN to
become huge. Our method, which handles many particle
the same time, consists in iterating directlyh(x,t).

Knowing the functionh(x,t) at timet, we want to calcu-
late h(x,t11). We callxmin andxmax, respectively, the po-
sitions of the leftmost and rightmost particles at timet and
l 5xmax2xmin11. In terms of the functionh(x,t), one has
0,h(x,t),1 if and only if xmin<x,xmax. Obviously, all
the positionsxi(t11) will lie betweenxmin andxmax11. The
probability pk that a given particlei will be located at posi-
tion xmin1k at time t11 is

pk5^h~xmin1k21,t11!&2^h~xmin1k,t11!&, ~35!

with ^h(x,t11)& given by Eq.~34!. Obviously,pkÞ0 only
for 0<k< l .

The probability to have, for everyk, nk particles at loca-
tion xmin1k at time t11 is given by

P~n0 ,n1 , . . . ,nl !5
N!

n0! n1! ••• nl !
p0

n0 p1
n1

••• pl
nl

3d~N2n02n12•••2nl !. ~36!

Using a random number generator for a binomial distrib
tion, expression~36! allows one to generate randomnk . This
is done by calculatingn0 according to the distribution

P~n0!5
N!

n0! ~N2n0!!
p0

n0~12p0!N2n0, ~37!

thenn1 with

P~n1un0!5
~N2n0!!

n1! ~N2n02n1!! S p1

12p0
D n1

3S 12
p1

12p0
D N2n02n1

, ~38!

and so on. This method can be iterated to produce thel 11
numbersn0, n1, . . . , nl distributed according to Eq.~36!.
Then we constructh(x,t11) by

h~x,t11!51 if x,xmin ,

h~x,t11!5
1

N (
i 5k11

l

ni if xmin<x<xmax11,

and x5xmin1k, ~39!

h~x,t11!50 if x.xmax11.

As the width l of the front is roughly of order lnN, this
method allowsN to be very large.

Using this method with the generator of random binom
numbers given in@21#, we have measured the velocityvN of
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2602 56ERIC BRUNET AND BERNARD DERRIDA
the front for several choices ofp ~0.05, 0.25, and 0.45! and
for N ranging from 100 to 1016. We measured the velocitie
with the expression

vN5
X1062X105

93105
. ~40!

Figure 3 is a log-log plot of the differencev02vN versus
1/N compared to the prediction~7! for «51/N. The variation
of vN when using longer times or different random numb
was not larger than the size of the symbols. We see in Fi
that the speedvN of the front seems to be given for largeN
by

vN.v02
K

~ lnN!2 , ~41!

where the coefficientK is not too different from the predic
tion ~7!.

The agreement, however, is not perfect. The shiftv02vN
seems to be proportional to (lnN)22, but the constant in Fig
3 looks slightly different from the one predicted by Eq.~7!.
A possible reason for this difference could have been
discretization of the front: instead of only cutting off the ta
as in Secs. III and IV, here the whole fronth(x,t) is con-
strained to take values multiple of 1/N. One might think that
this could explain this discrepancy. However, we ha
checked numerically~the results are not presented in th
paper! that Eq.~13! with h(x,t) constrained to be a multiple
of a cutoff« does not give results significantly different fro
the simpler model of Secs. III and IV with only a sing
cutoff. So we think that the full discretization of the fron
cannot be responsible for a different constantK. The discrep-
ancy observed in Fig. 3 is more likely due to the effect of t
randomness of the process. It is not clear, however, whe
this mismatch would decrease for even largerN. It would be
interesting to push the numerical simulations further a
check theN dependence of the front velocity for very larg
N.

FIG. 3. Differencev02vN versus 1/N for three choices ofp.
The symbols represent the result of our numerical simulations of
stochastic process and the solid lines indicate the prediction~7! for
«51/N.
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VI. CONCLUSION

We have shown in the present work that a small cutof«
in the tail of solutions of traveling-wave equations has t
effect of selecting a single velocityv« for the front. This
velocity v« converges to the minimal velocityv0 when«→0
and the shiftv02v« is surprisingly large~7! and ~8!.

Very slow convergences to the minimal velocity ha
been observed in a number of cases@8,13–15# as well as the
example of Sec. V. As the effect of the cutoff on the veloc
is large, it is reasonable to think that it would not be affect
much by the presence of noise. The example of Sec. V sh
that the cutoff alone gives at least the right order of mag
tude for the shift and it would certainly be interesting to pu
the simulations further for this particular model to s
whether the analysis of Sec. IV should be modified by
noise. The numerical method used in Sec. V to study a v
large (N;1016) system was very helpful to observe a log
rithmic behavior. We did not succeed in checking in earl
works @13–15,22# whether the correction was logarithmic
mostly because the published data were usually too nois
obtained on a too small range of the parameters. Still, eve
the cutoff was giving the main contribution to the shift of th
velocity, other properties would remain very specific to t
presence of noise, like the diffusion of the position of t
front @16#.

Our approach of Sec. IV shows that the effect of a sm
cutoff is the existence of a scaling form~20! and ~30! that
describes the change in the shape of the front in its ste
state. The effect of initial conditions for usual traveling-wa
equations~with no cutoff! leads to a very similar scaling
form for the change in the shape of the front in the transi
regime. This is explained in the Appendix, where we sh
how the logarithmic shift of the position of a front due
initial conditions@10,23# can be recovered.
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APPENDIX: EFFECT OF INITIAL CONDITIONS
ON THE POSITION AND ON THE SHAPE

OF THE FRONT

In this appendix we show that ideas very similar to tho
developed in Sec. IV allow one to calculate the position a
the shape at timet of a front evolving according to Eq.~1!,
or a similar equation, given its initial shape. The main idea
that in the long-time limit, there is a region of sizeAt ahead
of the front that keeps the memory of the initial conditio
We will recover in particular the logarithmic shift in th
position of the front due to the initial condition@10,23#,
namely, that if the initial shape is a step function

h~x,0!50 if x.0,

h~x,0!51 if x,0, ~A1!

then the positionXt of the front at timet increases like

e
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Xt.2t2
3

2
lnt. ~A2!

More generally, if initially

h~x,0!5xne2g0x if x.0,

h~x,0!51 if x,0, ~A3!

we will show that forn.22

Xt.2t1
n21

2
lnt, ~A4!

whereas the shift is given by Eq.~A2! for n,22. Here,
there is no cutoff, but the transient behavior in the long-ti
limit gives rise to a scaling function very similar to the on
discussed in Sec. IV.

If we write the position of the front at timet as

Xt5v0t2c~ t !, ~A5!

we observed numerically~as in Fig. 2 of Sec. III! and we are
going to see in the following that the shape of the front tak
for large t, the scaling form

h~x,t !5taGS x2Xt

ta De2g0~x2Xt!, ~A6!

which is very similar to Eqs.~20! and ~30!.
If we use Eqs.~A5! and ~A6! into the linearized form of

Eq. ~1!, we get, using the fact thatv052 andg051,

1

ta G91
1

t12a
~azG82aG!1taċ G5 ċ G8, ~A7!

wherez5(x2Xt)t
2a. By writing that the leading orders o

the different terms of Eq.~A7! are comparable, we see th
we must have

a5
1

2
, ~A8!

ċ.
b

t
~A9!

for someb and that the right-hand side of Eq.~A7! is neg-
ligible. Therefore, the equation satisfied byG is

d2

dz2 G1
z

2

d

dz
G1S b2

1

2DG50 ~A10!

and the position of the front is given by

Xt.v0t2b lnt. ~A11!

As in Sec. IV, we expect that ast→`, the front will
approach its limiting form and therefore that forz small, the
shape will look like Eq.~15!. Therefore, we choose the so
lution Gb(z) of Eq. ~A10!, which is linear atz50. This
solution can be written as an infinite sum
e

s,

Gb~z!5A(
n50

`
~21!n

~2n11!!
z2n11)

i 50

n21

~b1 i !

5A(
n50

`
~21!n

~2n11!!

G~n1b!

G~b!
z2n11. ~A12!

~The second equality is not valid whenb is a nonpositive
integer.!

To determineb, one can notice that the scaling form~A6!
has to match the initial condition whenx is large andt of
order 1. We thus need to calculate the asymptotic behavio
G(z) whenz is large.

For certain values ofb, there exist closed expressions
the sum~A12!. For instance,

G22~z!5AS z1
z3

3
1

z5

60D ,

G7/2~z!5AS z2
z3

3
1

z5

60De2z2/4,

G21~z!5AS z1
z3

6 D ,

G5/2~z!5AS z2
z3

6 De2z2/4, ~A13!

G0~z!5Az,

G3/2~z!5Aze2z2/4,

G1~z!5Ae2z2/4E
0

z

et2/4dt.

G1/2~z!5AE
0

z

e2t2/4dt.

One can check directly on Eq.~A10! thatGb has a symmetry

Gb~z!52 ie2z2/4 G3/22b~ iz!. ~A14!

For anyb, one can obtain the large-z behavior ofG(z).
To do so, we note that forb.0, one can rewrite Eq.~A12!
as

Gb~z!5
A

G~b!
E

0

`

dt tb23/2sin~Atz!e2t

5
2A

G~b!
z122bE

0

`

dt t2b22sin~ t !e2t2/z2
.

~A15!

For 0,b,1, the second integral in Eq.~A15! has a nonzero
limit and this gives the asymptotic behavior ofGb(z),

Gb~z!.2
2A

G~b!
cos~pb! G~2b21!z122b. ~A16!

From Eq.~A12!, one can also show that
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Gb952
G~b11!

G~b!
Gb11 , ~A17!

implying that Eq.~A16! remains valid for allb except for
b53/2, 5/2, 7/2, etc., where the amplitude in Eq.~A16! van-
ishes. For these values ofb, Gb(z) decreases faster than
power law@see Eq.~A13!#.

The functionsGb calculated so far are acceptable scali
functions for the shape of the front only forb<3/2. Indeed,
one can see in Eq.~A16! that for 3/2,b,5/2 the function
Gb(z) is negative for largez. In fact, for all b.3/2, this
function changes its sign at least once, so that the sca
form ~A6! is not reachable for an initialh(x,0) that is always
positive. It is only forb<3/2 thatGb remains positive for all
z.0.

Looking at the asymptotic form~A16!, we see that if ini-
tially h(x,0)5xne2g0x, the only functionGb(z) that has the
right large-z behavior is such that 122b5n and this gives,
u

ov
ng

together with Eq.~A11!, the expression~A4! for the shift of
the position. As the casesb.3/2 are not reachable, all initia
conditions corresponding ton,22 or steeper~such as step
functions! give rise toG3/2 and the shift in position given by
Eq. ~A2!.

The analysis of this appendix can be extended to ot
traveling-wave equations such as Eq.~13!, with more general
functionsv(g) ~having a nondegenerate minimum atg0) as
in Eq. ~14!. Then the expressions~A2! and~A4! of the shift
become

Xt.v0t2
3

2g0
lnt ~A18!

and

Xt.v0t2
12n

2g0
lnt. ~A19!
ett.
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