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Shift in the velocity of a front due to a cutoff
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We consider the effect of a small cutaffon the velocity of a traveling wave in one dimension. Simulations
done over more than ten orders of magnitude as well as a simple theoretical argument indicate that the effect
of the cutoffe is to select a single velocity that converges whken0 to the one predicted by the marginal
stability argument. For smadi, the shift in velocity has the fori{(Ine) 2 and our prediction for the constant
K agrees very well with the results of our simulations. A very similar logarithmic shift appears in more
complicated situations, in particular in finite-size effects of some microscopic stochastic systems. Our theoret-
ical approach can also be extended to give a simple way of deriving the shift in position due to initial
conditions in the Fisher-Kolmogorov or similar equatiof$1063-651X97)01609-1

PACS numbgs): 02.50.Ey, 03.40.Kf, 47.20.Ky

I. INTRODUCTION

1
v(y)=y+ <. (4)
Equations describing the propagation of a front between a Y
stable and an unstable state apgéai7] in a large variety of
situations in physics, chemistry, and biology. One of the sim

plest equations of this kind is the Fisher-Kolmogoifdy2]

As vy is arbitrary, this shows the well-known fact that the
Trange of possible velocities is=2. The minimal velocity
vo=2 is reached foryy=1 and for steep enough initial con-

equation ditions h(x,0) (which decay faster thaa™ ¥0¥), the solution
) selected 3,4,6,7,10—12for larget is the one corresponding
@ _ ﬂ +h-h3 (1) to this minimal velocityv .
2 1 . . .
at X Equations of typé1) are obtained either as the large-scale

limit [5,8,13—16 or as the mean-field lim{tl7] of physical

which describes the evolution of a space- and time-situations that are discrete at the microscopic I¢patticles,
dependent concentratidm(x,t) in a reaction-diffusion sys- lattice models, etg.As the number of particles is an integer,
tem. This equation, originally introduced to study the spreadhe concentratiom(x,t) could be thought of as being larger
of advantageous genes in a populatiahy has been widely than somes, which would correspond to the value lofx, t)
used in other contexts, in particular to describe the time dewhen a single particle is present. Equations of typeap-
pendence of the concentration of some species in a chemicpéar then as the limit of the discrete model when0.
reaction[8,9]. Several author$8,13,14 already have noticed in their nu-

For such an equation, the uniform solutiohss1 and merical works that the speagd, of the discrete model con-
h=0 are, respectively, stable and unstable and it is knowwerges slowly, ag tends to O, towards the minimal velocity
[3,7,10—-12 that for initial conditions such thdt(x,0)—1 as vy. We believe that the main effect of having#0 is to
x— —o and h(x,00—0 as x— +« there exists a one- introduce a cutoff in the tail of the front and that this changes
parameter family=, of traveling-wave solutionfindexed by  the speed noticeably.

their velocityv) of the form The speed of the front is in general governed by its tail. In
the present work, we consider equations similar to @g.
h(x,t)=F (x—vt), (2)  which we modify in such a way that whenevi(x,t) is

much smaller than a cuto#f, it is replaced by 0. The cutoff

with F, decreasingF,(z)—1 asz—— andF,(z)—0 as € can be introduced by replacing EQ) by
z—, The analytic expression of the shapgis in general

not known, but one can determine the range of velocities @: igﬂh— h3)a(h), )
for which solutions of typg?2) exist. If one assumes an ex- at  ox
ponential decay
with
F,(z)=e™ 7 forlarge z, 3
a(h)y=1 if h>g,
it is easy to see by replacing Eq®) and(3) in Eqg. (1) that
the velocityv is given by a(h)y<1 if h<e. (6)
For example, one could choos®(h)=1 for h=¢ and
*Electronic address: eric.brunet@ens.fr a(h)=h/e for h<e. Another choice that we will use in Sec.
"Electronic address: bernard.derrida@ens.fr IV is simply a(h)=1 if h>¢ anda(h)=0 if h<e.
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The question we address here is the effect of the cutoff TABLE |. Values of y, andv, for somep whene=0.
on the velocityv . of the front. We will show that the veloc-
ity v, converges, as—0, to the minimal velocityw, of the P 0.05 0.25 0.45
original problem(without a cutofj and that the main correc- 275111 2553 241 4.051 84
tion to the velocity of the front is v 045188 08107D 097919 ..
I S S .
Ve=U0™ 75 VYO (ng)2 or 0 with probability 1— p). At this stage we will not give a

justification for introducing the cutoft. This will be dis-
for an equation of typél) for which the velocity is related to cussed in Sec. V.

the exponential decay of the shapg2) by some relation We consider for the initial condition a step function
v(vy). (Everywhere we denote by, the minimal velocity _
and y, the corresponding value of the decgy In the par- h(x,00=0 if x=0,
ticular case of Eq(1), where is given by Eq.(4), this _
fieular case of Eqtl) v(7) is given by Eq.4) h(x0=1 if x<O. (10
2 Clearly, for such an initial conditiorh(x,t)=1 for x<0 at
V,=2— —. (8) all times. As h(x,t)=1 behind the front anch(x,t)=0
(Ing) ahead of the front, we define the positi¥p of the front at
timet by

In Sec. Il we describe an equation of ty@ where both
space and time are discrete, so that simulations are much tee
easier to perform. The results of the numerical simulations of Xi= 2>, h(x,t). (11
this equation are described in Sec. lll: s> 0, the velocity x=0
is seen to converge like ()2 to the minimal velocityv

and the shape of the front appears to take a scaling form. The velocity of the fronb,, can then be calculated by

In Sec. IV we show that for equations of typ#) in the X,
presence of a small cutoff as in Eq.(5), one can calculate V.= IimT=<XH1—Xt), (12
both the shape of the front and the shift in velocity. The toe
results are in excellent agreement with the numerical data of . ) .
sec. I where the average is taken over tirhdote that ah(x,t) is

In Sec. V we consider a model defined, for a finite num-ONly defined on integers, the differendg. ,— X is time
berN of particles, by some microscopic stochastic dynamic$léPendent and has to be averaged as in(E2).]
that reduces to the front equation of Secs. Ill and IV in the Whene=0, the evolution equatiofd) becomes
limit N—o. Despite the presence of noise, our simulations a4 AN a 2
indicate that in this case too the velocity dependence of the hOGt+1)=1=[1=ph(x=11)=(1=p)h(x,1)]"
front decays slowljfas (IrlN) 2] to the minimal velocityv o

of the front. As for Eq. (1), there is a one-parameter family of solutions
F, of the form(2) indexed by the velocity which is related
Il. DISCRETE FRONT EQUATION as in Eq.(3) to the exponential decay of the shape by

To perform numerical simulations, it is much easier to 1
study a case where both time and space are discrete vari- v(y)= ;In[ZpeM 2(1-p)]. (14
ables. We consider here the equation

[This relation is obtained as E@t) by considering the tail of
h(x,t+1)=g(x,t) ©(g(x,t)—e), (98 the front wheren(x,t) is small and where therefofd3) can
be linearized,
where One can show that fop<1/2, v(y) reaches a minimal
value v, smaller than 1 for some,, whereas forp=1/2,
g(x,H)=1-[1-ph(x—1H)—(1-p)h(x,t)]>. (90  u(y) is a strictly decreasing function af, implying that the
minimal velocity isvo=Ilim,_v(y)=1. We will not dis-
Time is a discrete variable and if initially the concentrationcuss this phase transition here and we assume from now on
h(x,0) is only defined whex is an integerh(x,t) remains thatp<1/2. Table | gives some values @f andy, obtained
so at any later time. Becauseandx are both integers, the from Eq. (14).
cutoff & can be introduced as in E(Q) in the crudest way It is important to notice that fop<<1/2, the functiorv(y)
using a Heavisidé® function.[We have checked, however, has a single minimum ag,. Therefore, there are in general
that other ways of introducing the cutaffas in Eqs(5) and  two choicesy; and vy, of vy for each velocityv. Forv # v,
(6) do not change the resul}s. the exponential decay ofF,(z) is dominated by
Equation(9) appears naturallyin the limit e=0) in the  min(yy,v,). As v—uv,, the two rootsy, and y, become
problem of directed polymers on disordered tr¢&%,18  equal and the effect of this degeneracy gitiesa well cho-
(where the energy of the bonds is either 1 with probabpity sen framg
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FIG. 1. Differencevy—uv, for p=0.05, 0.25, and 0.5. The sym-  FIG. 2. Normalized shape of the frost(z)e?* versusz for
bols represent the result of our numerical simulations and the solig=0.25 and several choices of
lines indicate the prediction of the analysis of Sec. IV.
s.(z2)=h(z+X;,t). (19
Fvo(z):Aze* Yoz for large z, (15
When the system reaches the limit cy¢k), the shape
whereA is a constant. This largebehavior can be recov- S.(z) becomes roughly independent of the time chogém.
ered by looking at the general solution of the linearized formfact, it becomes periodic of periof, but the shaps, has a
of Eqg. (13), smooth envelopg.We have measured this shape at some
arbitrary large enough time to avoid transient effects. As we
h(x,t+1)=2ph(x—1)+2(1-p)h(x,t). ~ (16)  expects,(z) to look more and more lik&, (2) ase tends to
0, we normalize this shape by dividing it ley 0. The result
I1l. NUMERICAL DETERMINATION OF THE VELOCITY sa(zl)leyOZ ils3 plottgd versusg7 for p=0.25 ande=10"%,
. . . . 1075 10 %, 10 =, and 10 ~" in Fig. 2.
We iterated num.erlcally Eq9) with the |n|t|fal condition On the left-hand side of the gragh, our data coincide over
(10) for several choices gf<1/2 and fore varying between an increasing range asdecreases, indicating that far from

17 H
0.03 and 10~". We observed that the speed is usually very, cutoff, the shape converges to expressids) of

easy to measure because, after a short transient time, the ;) op the right-hand side, the curves increase up to a
system reaches a periodic regime for which Yo

maximum before falling down to some small value that
h(x,t+T)=h(x—Y,t) (17)  seems to be independent of Whene is multiplied by a
constant factorthere 102), the maximum as well as the
for some constant§ andY. The speed, of the frontis then right-hand side of the curves is translated by a constant
simply given by amount. This indicates that far small enough, the shape
s.(2) in the tall (that is, forz large takes the scaling form

V= (18) Z

[Ing|

I <

s.(2)=|Ine| G e 0%, (20

For example, fop=0.25 ande =10"°, we find T=431 and
Y =343, so thatv,=343/431. The emergence of this peri- We will see that our analysis of Sec. IV does predict this
odic behavior is due to the locking of the dynamical systerrscaling form. As one expects this shape to coincide with the
of theh(x,t) on a limit cycle. Becaus¥ andT are integers, ~asymptotic form(15) of F, (z) for 1<z<]|Ing|, the scaling
our numerical simulations give the speed with iafinite  function G(y) should be linear for smaj.
accuracy.
For each c_:hoice gb ande, we m_easured the_speed o_f the IV. CALCULATION OF THE VELOCITY
front, as defined by Eq(1l2) and its shape. F|gure lisa FOR A SMALL CUTOEE
log-log plot of the differenceyy—v, versuse (varying be-
tween 0.03 and 10') for three choices of the parameter  The first remark we make is that as soon as we introduce
p. The solid lines on the plot indicate the value predicted bya cutoff through a functiona(h), which is everywhere
the calculations of Sec. IV. smaller than 1, the velocity, of the front is lowered com-
We see in this figure that the velocity converges slowly pared to the velocity obtained in the absence of a cutoff. This
towards the minimal velocity, ass—0. Our simulations, is easy to check by comparing a solutiog(x,t) of Eq. (5),
done over several orders of magnitughere 15, reveal that wherea(h) is present, and a solutidm(x,t) of Eq. (1). If
the convergence is logarithmicy—uv .~ (Ing) 2. initially h_(x,0)<hg(x,0), the solutiorh, will never be able
As the front is moving, to measure its shape, we need tdo take over the solutiot,. Indeed, if the two functions
locate its position. Here we use expressibh) and we mea- h,(x,0) andhy(x,0) were to coincide for the first time at
sure the shaps,(z) of the front at a given time relative to some point X, we would have at that point
its positionX; by 9°h, 19x?< d*hy/9x? and together with the effect ad(h)
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this would bring back the system in the situation where Ae %[ — v, sin(yiZo) + ¥iCOS YiZo) |= —v.e Y .
h,(x,t) <hg(x,t) [3,7]. This shows that ,<v. (26b
For the calculation of the velocity,, we will consider ] ] ]
first the modified Fisher-Kolmogorov equati¢s) when the ~ Taking the ratio between these two relations leads to
cutoff functiona(h) is simply given by y
I
a(h)=0(h—s). (21) Y tanyizg)  Cf @7

In this section we will calculate the leading correction to the When A is small, y,=y,=1, v,=v,=2, andy,~A%2
velocity whene is small and we will obtain the scaling func- Thus the only way to satisfy Eq27) is to sety,zy=m and
tion G that appears in Eq20). Then we will discuss briefly 7— v,z=y,~AY2 Therefore, Eq.(26) implies to leading
how our analysis could be extended to more general forms afrder thatzy= — (Ing)/y, and the conditiony;zy= = gives
the cutoff functiona(h) or to other traveling-wave equations
such as Eq(9). T T
As v, is the velocity of the front, its shape Y= 2" Tne|”
s.(z2)=h(z+uv,t,t) in the asymptotic regime satisfies

(28)

Then, asy,; is small, the differenc& =vy—v, is given by

v,S,+8,+(s,~s})a(s,)=0.
1, v(yo)my
When ¢ is small, with the choicg21) for a(h), we can Vo~ V= 50"(Y0) Y =" 2(Ine)? (29
decompose the range of valueszahto three regionstegion
I, wheres,(z) is not small compared to Iggion Il, where  which is the result announced in Ed3) and(8).
£<s,(z)<1; andregion I, wheres,(z)<e. A different cutoff functiona(h) should not affect the

In region |, the shape of the frord, looks like F, ,  shape ofs, in region Il or the sizez, of region II. Only the

whereas in regions Il and lll, as. is small, it satisfies the precise matching between regions Il and Il might be modi-

linear equations fied and we do not think that this would change the leading
dependence of, in &, which controls everything. In fact,
v,S;+8,+s,=0 inregionll, (22)  there are other choices of the cutoff functafh) (piecewise
constant for which we could find the explicit solution in
v.S.+s.=0 inregion Ill. (23)  region I, confirming that the precise form afh) does not

change Eq(28). The generalization of the above argument to
These linear equation®2) and (23) can be solved easily. equations other than Eql) (and in particular to the case
The only problem is to make sure that the solution in regionstudied in Secs. Il and IJlis straightforward. Only the form
Il and its derivative coincides witk, at the boundary be- of the linear equation is changed and the only effect on the
tween | and Il and with the solution valid in region Il at the final result(7) is that one has to use a different function

boundary between Il and llI. If we calh the shift in the v(7).
velocity When expressiori7) is compared in Fig. 1 with the re-
sults of the simulations, the agreement is excellent. More-
A=vo—v, (24)  over, in region Il, one sees from Eq25) and(28) that
and if we denotey,*ivy, the two roots of the equation [ 7yez\
v(y)=v,., the shapes, is given in the three regions by S:(2)= W_%||”8|5'” W)e 7, (30)
s.(z2)=F,(z) inregionl, which also agrees with the scaling for(20).
Recently, for a simple model of evolutidi9,2Q gov-
s.(z)=Ce "Z%sin(y;z+D) inregion ll, (25  erned by a linear equation, the velocity was found to be the
logarithm of the cutoff to the power 1/3. This result was
S.(z)=ge ?=2"%) in region I, obtained by an analysis that has some similarities to the one
presented in this section.
and we can determine the unknown quantieD, z,, and
v, by using the boundary conditions. V. STOCHASTIC MODEL

For large z we know from Eq. (15 that
FUO(Z)zAze_yoz for someA. Therefore, asy,— y,~A and .Many models described .by trave]ing—waye equatior)s
y,~AY2 the boundary conditions between regions | and ”orlgmate' from.a Iargg—;scale limit of microscopic stochastic
impose, to leading order in Y2 thatC=A/v, andD=0. models involving a flnltg numbe_N of part|cles_[1_3—1@. _

At the boundary between regions Il and Ill, we have Here we study such a microscopic model,_ the limit of which
s,(2)=¢ andz=2z,. If we impose the continuity of, and of reduces to Eq(_lS)_whenN—wO. Our nl_JmerlcaI results_, pre-
its first derivative at this point, we get sented below, indicate aJar@fbcorrect|or_1 _to the veloqty of

the formuvy=vo,—a(InN)~2 with a coefficienta consistent
Ae " sin( y,zp) =€ y; (269 with the one calculated in Sec. IV far=1/N.

The model we consider in this section appears in the study
and of directed polymerg14] and is, up to minor changes,
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equivalent to a model describing the dynamics of hardo the evolution equatiofil3). In the rest of this section we
sphereq15]. It is a stochastic process discrete in both timepresent the results of simulations done for large but fiNite
and space with two parametels; the number of particles, and we will see that the shift in the velocity seems to be very
and p, a real number between 0 and 1. At tirhd€t is an  close to the expression of Sec. IV wher 1/N.

intege), we haveN particles on a line at integer positions  With the most direct way of simulating the model fidr
X1(1), X5(t), ... ,Xn(1). Several particles may occupy the finite, it is difficult to study systems of size much larger than
same site. At each time step, thepositions evolve in the 10°. Here we use a more sophisticated method allovrig
following way: for eachi, we choose two particleg and become huge. Our method, which handles many particles at
ji at random among thN particles.(These two particles do the same time, consists in iterating diredtlfx,t).

not need to be differentThen we update;(t) by Knowing the functiorh(x,t) at timet, we want to calcu-
late h(x,t+1). We callX,i, and Xy, respectively, the po-
Xi(t+1)=maxx; (t) +a;, Xj: () +ef], (3D  sitions of the leftmost and rightmost particles at timend

| =Xmax— Xmint 1. In terms of the functiorn(x,t), one has
wherea; and @] are two independent random numbers tak-O<h(x,t)<<1 if and only if X, <X<Xpax. Obviously, all
ing the value 1 with probabilityp or O with probability the positions¢(t+ 1) will lie betweenx i, andXmp+ 1. The
1—p. The numbersy;, o/, j;, andj/ change at each time probability p, that a given particlé will be located at posi-
step. Initially (=0), all particles are at the origin, so that we tion Xp,+k at timet+1 is
havex;(0)=0 for alli.
At tliEne) t, the distribution of thex;(t) on the line can be Pk= (N(Xmint k=1t +1)) = (h(Xmint k,t+1)), (35
represented by a functiom(x,t), which counts the fraction

of particles strictly at the right o, with (h(x,t+1)) given by Eq.(34). Obviously,p,#0 only

for Osk=l.
1 The probability to have, for everl, n, particles at loca-
hix,t)=— > 1. (32)  tion Xy, +k at imet+1 is given by
in(t)>x
. . . . N! ng N1 n
Obviously h(x,t) is always an integral multiple of i, At P(ng,ny, ... n)= ngl gl ——-miPo P1 o Py
t=0, we haveh(x,0)=1 if x<0 andh(x,0)=0 if x=0.
One can notice that the definition of the positidp of the XS8(N—ng—n;—---—n;). (36
front used in Eq(11) coincides with the average position of
the N particles Using a random number generator for a binomial distribu-
tion, expressiori36) allows one to generate randamp. This
= 1 is done by calculatingny according to the distribution
Xi= 2 h(xt) =52 xi(t). (33
x=0 =1 N! N
. " . . P(no)= 1 N—ng)! poo(l_pO)Nino’ (37)
Given the positions;(t) of all the particleqor, equiva- No! (N—np)!
lently, given the functiorh(x,t)], thex;(t+1) become inde- thenn. with
pendent random variables. Therefore, gitér,t), the prob- 1
ability for each particle to have at time+1 a position (N=ng)! / p ny
strictly larger tharx is given by P(ny|ng) = o L )
ni! (N=ng—ny)!\1-pg
<h(X,t+ 1) | h(X,t)> p N—ng—nq
x| 1- — ) (38)
=1-[1-ph(x—1)—(1-p)h(x,t)]*. (34 1-po ’

The difficulty of the problem comes from the fact that oneand so on. This method can be iterated to producd thk
can only averagé(x,t+1) over a single time step. On the numbersng, ny, ... , n; distributed according to Ed36).
right-hand side of Eq(34) we see terms such &£(x,t) or ~ Then we construdh(x,t+1) by
h(x—1t)h(x,t) and one has to calculate all the correlations )
of the h(x,t) in order to find(h(x,t+1)). This makes the h(x,t+1)=1 if X<Xmin,
problem very difficult for finiteN. However, givenh(x,t),
the x;(t+1) are independent and in the lim—o, the
fluctuations ofh(x,t+1) are negligible. Therefore, when
N—o, h(x,t) evolves according to the deterministic equa-

1 _
h(X|t+ =— 2 n; if Xmin=X=Xmaxt 1,
i<kr1

tion (13). As the initial condition is a step function, we ex- and X=Xmin+ K, (39
pect the front to move, in the limNl—-oe, with the minimal
velocity vq of Eg. (14). h(x,t+1)=0 if X>Xmpat 1.

For large but finiteN, we expect the correction to the
velocity to have two main origins. Firsh(x,t) takes only As the width| of the front is roughly of order IN, this
values that are integral multiples of\L/so that 1IN plays a method allowsN to be very large.
role similar to the cutoft of Sec. Il. Secondh(x,t) fluctu- Using this method with the generator of random binomial
ates around its average and this has the effect of adding noisgimbers given if21], we have measured the velocity; of
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1 VI. CONCLUSION

We have shown in the present work that a small cutoff
in the tail of solutions of traveling-wave equations has the
effect of selecting a single velocity, for the front. This
velocity v, converges to the minimal velocity, whene —0
and the shify—uv, is surprisingly largg7) and (8).

Very slow convergences to the minimal velocity have
been observed in a number of ca@d3-19 as well as the
example of Sec. V. As the effect of the cutoff on the velocity
is large, it is reasonable to think that it would not be affected
, . , , , , , l much by the presence of noise. The example of Sec. V shows
10716 107" 10712 107 10°® 107 10™* 0.01 that the cutoff alone gives at least the right order of magni-

N tude for the shift and it would certainly be interesting to push

) . the simulations further for this particular model to see

FIG. 3. Differencevo—vy versus IN for three choices ob.  \yhether the analysis of Sec. IV should be modified by the
The symlbols represent the resglt gf our nqmerlcal S|muI§t|0ns of th?\oise. The numerical method used in Sec. V to study a very
zt:clk/ﬁ?tlc process and the solid lines indicate the predi¢fiofor I{:lrge_(N~101§) system_was very helpfl_JI to obsgrve_ a Iog_a-

rithmic behavior. We did not succeed in checking in earlier
) works [13—15,22 whether the correction was logarithmic,

the front for several choices qf (0.05, 0.25, and 0.9%nd  ogtly because the published data were usually too noisy or
for N ranging from 100 to 1¥. We measured the velocities gptained on a too small range of the parameters. Still, even if
with the expression the cutoff was giving the main contribution to the shift of the

velocity, other properties would remain very specific to the

presence of noise, like the diffusion of the position of the
_ (40)  front[16].
9x10° Our approach of Sec. IV shows that the effect of a small
cutoff is the existence of a scaling for(@0) and (30) that
describes the change in the shape of the front in its steady

Figure 3 is a log-log plot of the differencg;—uvy versus 2 - .
1/N compared to the predictioff) for £ =1/N. The variation state. The effect of initial conditions for usual traveling-wave
' equations(with no cutoff leads to a very similar scaling

of vy when using longer times or different random numbers

was not larger than the size of the symbols. We see in Fig. gorr_n for thg c_hange in the .shape of the f_ront in the transient
that the speed , of the front seems to be given for large regime. This is explained in the Appendix, where we show
by how the logarithmic shift of the position of a front due to

initial conditions[10,23 can be recovered.

X106~ Xy
o=y T
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The agreement, however, is not perfect. The shjft vy
seems to be proportional to (i 2, but the constant in Fig.

3 looks slightly different from the one predicted by E@). APPENDIX: EFFECT OF INITIAL CONDITIONS

ON THE POSITION AND ON THE SHAPE

A poss;iblg reason for this difference could 'have been t_he OF THE FRONT
discretization of the front: instead of only cutting off the tail
as in Secs. Ill and IV, here the whole froh{x,t) is con- In this appendix we show that ideas very similar to those

strained to take values multiple ofNL/ One might think that developed in Sec. IV allow one to calculate the position and
this could explain this discrepancy. However, we havethe shape at time of a front evolving according to Eq1),
checked numericallythe results are not presented in this or a similar equation, given its initial shape. The main idea is
papej that Eq.(13) with h(x,t) constrained to be a multiple that in the long-time limit, there is a region of siz& ahead

of a cutoffe does not give results significantly different from of the front that keeps the memory of the initial condition.
the simpler model of Secs. Il and IV with only a single We will recover in particular the logarithmic shift in the
cutoff. So we think that the full discretization of the front position of the front due to the initial conditiofl0,23,
cannot be responsible for a different consténThe discrep- namely, that if the initial shape is a step function

ancy observed in Fig. 3 is more likely due to the effect of the

randomness of the process. It is not clear, however, whether h(x,00=0 if x>0,
this mismatch would decrease for even larjedt would be
interesting to push the numerical simulations further and h(x,00=1 if x<O0, (A1)

check theN dependence of the front velocity for very large
N. then the positiorX; of the front at timet increases like



56 SHIFT IN THE VELOCITY OF A FRONT DUE TO A CUTOFF 2603

X=2t— 2 int (A2) o D" T
=/Z1— zINnt. — n :
t 2 Gy(2) Ango(zm_l)!z i=Ho (B+i)
More generally, if initially “  (=1D)" I'(n+
A3 TV T s gy
h(x,0)=x"e” 7 if x>0, n=o (2n+ 1)t T'(B)
h(x,00=1 if x<0 (A3) (The second equality is not valid wheh is a nonpositive
’ ’ integer)

we will show that fory>—2 To determineB, one can notice that the scaling fo(#6)

has to match the initial condition whenis large andt of
v—1 order 1. We thus need to calculate the asymptotic behavior of
Xy=2t+ ——Int, (Ad)  G(2) whenzis large.
For certain values oB, there exist closed expressions of
whereas the shift is given by E@A2) for v<—2. Here, the sum(A12). For instance,
there is no cutoff, but the transient behavior in the long-time

Iimit gives _rise to a scaling function very similar to the one G_,(2)=A| z+ Z_+ = ,
discussed in Sec. IV. 3 60
If we write the position of the front at time as s s
z z 2
— T e o
Xi=vot—c(t), (A5) G7/2(Z)_A(Z 3 + 60 e '
we observed numericallfas in Fig. 2 of Sec. I)land we are 23
going to see in the following that the shape of the front takes, G_1(2)=A|z+ 5l
for larget, the scaling form
X— X4 z 21
h(X,t):taG< @ )eyo(XXt), (AB) Gsp(2)=A Z_E e , (A13)
which is very similar to Eqs(20) and (30). Go(2)=Az
If we use Eqs(A5) and (A6) into the linearized form of )
Eq. (1), we get, using the fact thaty=2 andy,=1, Ga(z)=Aze ¥4
1 1 . . 2?2
@6+ 7,(a2G' ~aG) 4t G=c G, (A7) Gi(2)=Ae? "‘foe‘ Mdt.
wherez=(x—X;)t™%. By writing that the leading orders of G (z)=AfZe*‘2’4dt
the different terms of Eq(A7) are comparable, we see that 12 '

we must have
One can check directly on EGA10) thatG 4 has a symmetry

1
=3, (A8) Gy(2)=—ie 7 Gy 4(i2). (A14)
8 For any B, one can obtain the largebehavior ofG(z).
C= T (A9)  To do so, we note that fg8>0, one can rewrite EqA12)
as
for someB and that the right-hand side of EGA7) is neg- A [
ligible. Therefore, the equation satisfied Byis Gg(2)= Tﬁ)fo dt A 3¥%in(\tz)e™
d? zd 1 oA " -
FG+ > d—ZG+ B— 5 G=0 (A10) _ 21—25f dt tZB—ZSin(t)e—t 122
INGZ)) 0
and the position of the front is given by (A15)
Xi=vot— B Int. (Al11) For 0<8<1, the second integral in EGA15) has a nonzero

limit and this gives the asymptotic behavior Gf;(2),
As in Sec. IV, we expect that as—«, the front will
approach its limiting form and therefore that fosmall, the __2A 1-28
shape will look like Eq.(15). Therefore, we choose the so- Gp(2)= F(’B)cos{ 7p) I'(26-1)z . (A1)
lution G4(z) of Eg. (A10), which is linear atz=0. This
solution can be written as an infinite sum From Eq.(A12), one can also show that
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rg+1)

TIB)G/;H- (A17)

Gp=—
implying that Eg.(A16) remains valid for all3 except for
B=3/2,5/2, 712, etc., where the amplitude in E416) van-
ishes. For these values @ G;(z) decreases faster than a
power law[see Eq(A13)].
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together with Eq(A11), the expressiofA4) for the shift of
the position. As the casg®>3/2 are not reachable, all initial
conditions corresponding te<<—2 or steepefsuch as step
functiong give rise toG3j, and the shift in position given by
Eqg. (A2).

The analysis of this appendix can be extended to other
traveling-wave equations such as E@), with more general

The functionsG 4 calculated so far are acceptable scalingfunctionsv(y) (having a nondegenerate minimum-gy) as

functions for the shape of the front only f@=3/2. Indeed,
one can see in EJA16) that for 3/2<3<5/2 the function
Gg(2) is negative for largez. In fact, for all 3>3/2, this

function changes its sign at least once, so that the scaling

form (A6) is not reachable for an initid(x,0) that is always
positive. Itis only for3<3/2 thatG ; remains positive for all
z>0.

Looking at the asymptotic forA16), we see that if ini-
tially h(x,0)=x"e” 7%, the only functionG4(z) that has the
right largez behavior is such that-128=» and this gives,

in Eqg. (14). Then the expression#2) and (A4) of the shift
become

3
Xi=vgt— 2—70Int (A18)
and
X =0t —Int A19
t=Uo 270 nt. ( )
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